518 lines
15 KiB
JavaScript
518 lines
15 KiB
JavaScript
#!/usr/bin/env node
|
||
|
||
const fs = require('fs');
|
||
const path = require('path');
|
||
const config = require('./config');
|
||
|
||
/**
|
||
* PostgreSQL到达梦数据库SQL转换器
|
||
*/
|
||
class PG2DMConverter {
|
||
constructor() {
|
||
this.conversionLog = [];
|
||
this.warnings = [];
|
||
this.stats = {
|
||
dataTypes: 0,
|
||
sequences: 0,
|
||
collates: 0,
|
||
indexes: 0,
|
||
coalesceIndexes: 0
|
||
};
|
||
}
|
||
|
||
/**
|
||
* 记录转换日志
|
||
*/
|
||
log(message, type = 'INFO') {
|
||
const timestamp = new Date().toISOString();
|
||
this.conversionLog.push({ timestamp, type, message });
|
||
console.log(`[${type}] ${message}`);
|
||
}
|
||
|
||
/**
|
||
* 记录警告
|
||
*/
|
||
warn(message) {
|
||
this.warnings.push(message);
|
||
this.log(message, 'WARN');
|
||
}
|
||
|
||
/**
|
||
* 转换数据类型
|
||
*/
|
||
convertDataTypes(sql) {
|
||
let converted = sql;
|
||
|
||
// 1. 转换基本类型(包括浮点类型和时间戳类型)
|
||
const typePattern = /\b(int8|int4|int2|numeric|bool|float8|float4|float|timestamptz)\b/gi;
|
||
|
||
converted = converted.replace(typePattern, (match) => {
|
||
const lowerMatch = match.toLowerCase();
|
||
if (config.dataTypeMapping[lowerMatch]) {
|
||
this.stats.dataTypes++;
|
||
return config.dataTypeMapping[lowerMatch];
|
||
}
|
||
return match;
|
||
});
|
||
|
||
// 2. 处理timestamp精度参数
|
||
// PostgreSQL: timestamp(6) 或 timestamp(0)
|
||
// 达梦: TIMESTAMP (不支持精度参数,直接移除)
|
||
converted = converted.replace(/\btimestamp\s*\(\s*\d+\s*\)/gi, (match) => {
|
||
this.log(`移除timestamp精度参数: ${match} -> TIMESTAMP`);
|
||
return `TIMESTAMP`;
|
||
});
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 转换序列为IDENTITY
|
||
*/
|
||
convertSequences(sql) {
|
||
let converted = sql;
|
||
|
||
// 第一步:匹配完整的列定义格式
|
||
// "id" BIGINT NOT NULL DEFAULT nextval(...)
|
||
// 使用更宽松的正则,匹配任意数据类型
|
||
const fullPattern = /"(\w+)"\s+([A-Z]+(?:\([^)]+\))?)\s+NOT\s+NULL\s+DEFAULT\s+nextval\s*\([^)]+\)/gi;
|
||
|
||
converted = converted.replace(fullPattern, (match, colName, dataType) => {
|
||
this.stats.sequences++;
|
||
this.log(`转换列定义: ${colName} ${dataType} -> IDENTITY(1,1)`);
|
||
return `"${colName}" ${dataType} IDENTITY(1, 1) NOT NULL`;
|
||
});
|
||
|
||
// 第二步:处理其他格式,直接移除 DEFAULT nextval(...)
|
||
const defaultPattern = /DEFAULT\s+nextval\s*\([^)]+\)/gi;
|
||
|
||
converted = converted.replace(defaultPattern, (match) => {
|
||
this.stats.sequences++;
|
||
this.log(`移除序列DEFAULT: ${match.substring(0, 50)}...`);
|
||
return 'IDENTITY(1, 1)';
|
||
});
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除COLLATE子句
|
||
*/
|
||
removeCollate(sql) {
|
||
let converted = sql;
|
||
|
||
// 匹配所有COLLATE格式
|
||
// COLLATE "pg_catalog"."default"
|
||
// COLLATE "default"
|
||
// COLLATE pg_catalog."default"
|
||
const collatePattern1 = /COLLATE\s+"pg_catalog"\."[^"]+"/gi;
|
||
const collatePattern2 = /COLLATE\s+"[^"]+"/gi;
|
||
const collatePattern3 = /COLLATE\s+\w+/gi;
|
||
|
||
let totalMatches = 0;
|
||
|
||
const matches1 = sql.match(collatePattern1);
|
||
if (matches1) totalMatches += matches1.length;
|
||
|
||
const matches2 = sql.match(collatePattern2);
|
||
if (matches2) totalMatches += matches2.length;
|
||
|
||
if (totalMatches > 0) {
|
||
this.stats.collates += totalMatches;
|
||
this.log(`移除 ${totalMatches} 个COLLATE子句`);
|
||
}
|
||
|
||
// 按顺序移除,先移除复杂的,再移除简单的
|
||
converted = converted.replace(collatePattern1, '');
|
||
converted = converted.replace(collatePattern2, '');
|
||
converted = converted.replace(collatePattern3, '');
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除PostgreSQL类型转换语法
|
||
*/
|
||
removeTypeCasts(sql) {
|
||
let converted = sql;
|
||
|
||
// 移除 ::type 语法
|
||
const typeCastPattern = /::(character\s+varying|varchar|text|integer|bigint|smallint|numeric|decimal|timestamp|date|time|boolean|regclass)/gi;
|
||
|
||
const matches = sql.match(typeCastPattern);
|
||
if (matches) {
|
||
this.log(`移除 ${matches.length} 个PostgreSQL类型转换`);
|
||
}
|
||
|
||
converted = converted.replace(typeCastPattern, '');
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除pg_catalog模式前缀和数据类型引号
|
||
*/
|
||
removePgCatalog(sql) {
|
||
let converted = sql;
|
||
|
||
// 移除 "pg_catalog". 前缀
|
||
const catalogPattern = /"pg_catalog"\./gi;
|
||
|
||
const matches = sql.match(catalogPattern);
|
||
if (matches) {
|
||
this.log(`移除 ${matches.length} 个pg_catalog前缀`);
|
||
}
|
||
|
||
converted = converted.replace(catalogPattern, '');
|
||
|
||
// 转换PostgreSQL布尔值为达梦格式(在移除引号之前)
|
||
converted = converted.replace(/\bDEFAULT\s+false\b/gi, 'DEFAULT 0');
|
||
converted = converted.replace(/\bDEFAULT\s+true\b/gi, 'DEFAULT 1');
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除数据类型的引号
|
||
*/
|
||
removeTypeQuotes(sql) {
|
||
let converted = sql;
|
||
|
||
// 先统一小写的text类型为TEXT(避免和"text_ops"操作符混淆)
|
||
converted = converted.replace(/\s+text\s+/gi, ' TEXT ');
|
||
converted = converted.replace(/\s+text([,\n\r])/gi, ' TEXT$1');
|
||
|
||
// 移除引号中的数据类型(达梦不需要给类型加引号)
|
||
// 必须在独立的步骤中处理,确保不会误伤列名
|
||
// 匹配模式:前面有空格,后面有空格或逗号
|
||
converted = converted.replace(/\s"(BIGINT|INT|SMALLINT|TINYINT|DECIMAL|NUMERIC|VARCHAR|CHAR|TEXT|DATE|TIME|TIMESTAMP|BIT|BOOLEAN|BOOL|BLOB|CLOB)"\s/gi, ' $1 ');
|
||
|
||
// 处理行尾的类型(后面紧跟换行或逗号)
|
||
converted = converted.replace(/\s"(BIGINT|INT|SMALLINT|TINYINT|DECIMAL|NUMERIC|VARCHAR|CHAR|TEXT|DATE|TIME|TIMESTAMP|BIT|BOOLEAN|BOOL|BLOB|CLOB)"([,\n\r])/gi, ' $1$2');
|
||
|
||
this.log('移除数据类型引号');
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除空的或不完整的PARTITION BY子句
|
||
*/
|
||
removeEmptyPartition(sql) {
|
||
let converted = sql;
|
||
|
||
// 移除空的PARTITION BY子句
|
||
// 格式1: )\nPARTITION BY (\n)\n;
|
||
// 格式2: ) PARTITION BY ();
|
||
converted = converted.replace(/\)\s*PARTITION\s+BY\s+\([^)]*\)\s*;/gi, ');\n');
|
||
|
||
const matches = sql.match(/PARTITION\s+BY\s+\(/gi);
|
||
if (matches) {
|
||
this.log(`移除 ${matches.length} 个空的PARTITION BY子句`);
|
||
}
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 简化索引语法
|
||
*/
|
||
simplifyIndexSyntax(sql) {
|
||
let converted = sql;
|
||
|
||
// 移除USING btree/hash/gist等
|
||
converted = converted.replace(/USING\s+\w+/gi, '');
|
||
|
||
// 移除操作符类 "pg_catalog"."text_ops" 或 "text_ops"
|
||
// 包括各种格式:int8_ops, text_ops, varchar_ops等
|
||
converted = converted.replace(/"pg_catalog"\."[^"]+_ops"/gi, '');
|
||
converted = converted.replace(/\s+"[^"]+_ops"/gi, '');
|
||
|
||
// 移除NULLS LAST/FIRST(在移除ASC/DESC之前)
|
||
converted = converted.replace(/\s+NULLS\s+(FIRST|LAST)/gi, '');
|
||
|
||
// 移除ASC/DESC(如果需要保留可以注释掉)
|
||
// converted = converted.replace(/\s+(ASC|DESC)/gi, '');
|
||
|
||
this.stats.indexes++;
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 移除索引中的重复列
|
||
*/
|
||
removeDuplicateIndexColumns(sql) {
|
||
let converted = sql;
|
||
|
||
// 匹配CREATE INDEX语句
|
||
const indexPattern = /(CREATE\s+(?:UNIQUE\s+)?INDEX\s+"[^"]+"\s+ON\s+"[^"]+"\."[^"]+"\s*\()([\s\S]*?)(\);)/gi;
|
||
|
||
converted = converted.replace(indexPattern, (match, prefix, columns, suffix) => {
|
||
// 解析列定义
|
||
const columnList = columns.split(',').map(col => col.trim());
|
||
const seen = new Set();
|
||
const uniqueColumns = [];
|
||
|
||
columnList.forEach(col => {
|
||
// 提取列名(去除ASC/DESC等)
|
||
const colNameMatch = col.match(/"(\w+)"/);
|
||
if (colNameMatch) {
|
||
const colName = colNameMatch[1].toLowerCase();
|
||
if (!seen.has(colName)) {
|
||
seen.add(colName);
|
||
uniqueColumns.push(col);
|
||
} else {
|
||
this.warn(`索引中发现重复列: ${colNameMatch[1]},已自动移除重复项`);
|
||
}
|
||
} else {
|
||
// COALESCE等表达式,直接保留
|
||
uniqueColumns.push(col);
|
||
}
|
||
});
|
||
|
||
return prefix + '\n ' + uniqueColumns.join(',\n ') + '\n' + suffix;
|
||
});
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 处理COALESCE函数索引
|
||
*/
|
||
processCoalesceIndexes(sql) {
|
||
let converted = sql;
|
||
|
||
// 第一步:移除PostgreSQL类型转换语法 ::type
|
||
converted = converted.replace(/::(character\s+varying|varchar|text|integer|bigint|smallint)/gi, '');
|
||
|
||
// 第二步:处理COALESCE函数索引
|
||
const coalesceIndexPattern = /CREATE\s+(?:UNIQUE\s+)?INDEX\s+"([^"]+)"\s+ON\s+"[^"]+"\."[^"]+"\s*\(([\s\S]*?)\);/gi;
|
||
|
||
converted = converted.replace(coalesceIndexPattern, (match, indexName, columns) => {
|
||
const coalesceCount = (columns.match(/COALESCE\s*\(/gi) || []).length;
|
||
|
||
if (coalesceCount > 0) {
|
||
this.stats.coalesceIndexes++;
|
||
|
||
if (coalesceCount > config.coalesceThreshold) {
|
||
this.warn(
|
||
`索引 ${indexName} 包含 ${coalesceCount} 个COALESCE函数,可能超过达梦816字符限制,已自动简化`
|
||
);
|
||
} else {
|
||
this.log(`处理索引 ${indexName} 中的 ${coalesceCount} 个COALESCE函数`);
|
||
}
|
||
|
||
// 移除COALESCE,保留原始列名
|
||
// 匹配多种格式:
|
||
// COALESCE("col_name", '-999')
|
||
// COALESCE(col_name, '-999')
|
||
let simplifiedColumns = columns.replace(
|
||
/COALESCE\s*\(\s*"?(\w+)"?\s*,\s*'[^']+'\s*\)/gi,
|
||
'"$1"'
|
||
);
|
||
|
||
// 移除多余的空格和换行
|
||
simplifiedColumns = simplifiedColumns.replace(/\s+/g, ' ').trim();
|
||
|
||
return match.replace(columns, simplifiedColumns);
|
||
}
|
||
|
||
return match;
|
||
});
|
||
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 添加转换说明注释
|
||
*/
|
||
addConversionHeader(sql, originalFile) {
|
||
const header = `/*
|
||
Converted to DaMeng SQL by pg2dm-converter
|
||
|
||
Source File : ${path.basename(originalFile)}
|
||
Source Server Type : PostgreSQL
|
||
Target Server Type : DaMeng 8
|
||
Conversion Date : ${new Date().toLocaleString('zh-CN')}
|
||
|
||
Conversion Summary:
|
||
- Data Types Converted: ${this.stats.dataTypes}
|
||
- Sequences -> IDENTITY: ${this.stats.sequences}
|
||
- COLLATE Clauses Removed: ${this.stats.collates}
|
||
- Indexes Simplified: ${this.stats.indexes}
|
||
- COALESCE Indexes Processed: ${this.stats.coalesceIndexes}
|
||
*/
|
||
|
||
`;
|
||
return header + sql;
|
||
}
|
||
|
||
/**
|
||
* 主转换方法
|
||
*/
|
||
convert(sql, originalFile = 'input.sql') {
|
||
this.log('开始转换PostgreSQL SQL到达梦语法');
|
||
|
||
let converted = sql;
|
||
|
||
// 1. 移除pg_catalog模式前缀(必须在最前面)
|
||
this.log('步骤1: 移除pg_catalog模式前缀...');
|
||
converted = this.removePgCatalog(converted);
|
||
|
||
// 2. 转换数据类型
|
||
this.log('步骤2: 转换数据类型...');
|
||
converted = this.convertDataTypes(converted);
|
||
|
||
// 3. 转换序列为IDENTITY
|
||
this.log('步骤3: 转换序列为IDENTITY...');
|
||
converted = this.convertSequences(converted);
|
||
|
||
// 4. 移除PostgreSQL类型转换
|
||
this.log('步骤4: 移除PostgreSQL类型转换...');
|
||
converted = this.removeTypeCasts(converted);
|
||
|
||
// 5. 移除COLLATE子句
|
||
this.log('步骤5: 移除COLLATE子句...');
|
||
converted = this.removeCollate(converted);
|
||
|
||
// 6. 移除数据类型引号
|
||
this.log('步骤6: 移除数据类型引号...');
|
||
converted = this.removeTypeQuotes(converted);
|
||
|
||
// 7. 移除空的PARTITION BY子句
|
||
this.log('步骤7: 移除空的PARTITION BY子句...');
|
||
converted = this.removeEmptyPartition(converted);
|
||
|
||
// 8. 简化索引语法
|
||
this.log('步骤8: 简化索引语法...');
|
||
converted = this.simplifyIndexSyntax(converted);
|
||
|
||
// 9. 移除索引中的重复列
|
||
this.log('步骤9: 移除索引中的重复列...');
|
||
converted = this.removeDuplicateIndexColumns(converted);
|
||
|
||
// 10. 处理COALESCE函数索引
|
||
this.log('步骤10: 处理COALESCE函数索引...');
|
||
converted = this.processCoalesceIndexes(converted);
|
||
|
||
// 11. 添加转换说明
|
||
if (config.output.addConversionComment) {
|
||
converted = this.addConversionHeader(converted, originalFile);
|
||
}
|
||
|
||
this.log('转换完成!');
|
||
return converted;
|
||
}
|
||
|
||
/**
|
||
* 生成转换日志文件
|
||
*/
|
||
generateLogFile(outputPath) {
|
||
const logContent = {
|
||
timestamp: new Date().toISOString(),
|
||
stats: this.stats,
|
||
warnings: this.warnings,
|
||
logs: this.conversionLog
|
||
};
|
||
|
||
const logFile = outputPath.replace('.sql', '_conversion.log.json');
|
||
fs.writeFileSync(logFile, JSON.stringify(logContent, null, 2));
|
||
this.log(`转换日志已保存: ${logFile}`);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 确保目录存在
|
||
*/
|
||
function ensureDir(dirPath) {
|
||
if (!fs.existsSync(dirPath)) {
|
||
fs.mkdirSync(dirPath, { recursive: true });
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 主函数
|
||
*/
|
||
function main() {
|
||
const args = process.argv.slice(2);
|
||
|
||
if (args.length === 0) {
|
||
console.log(`
|
||
PostgreSQL到达梦数据库SQL转换器
|
||
======================================
|
||
|
||
使用方法:
|
||
node converter.js <input-file.sql> [output-file.sql]
|
||
node converter.js input/*.sql
|
||
|
||
示例:
|
||
node converter.js input/schema.sql
|
||
node converter.js input/schema.sql output/schema_dm.sql
|
||
node converter.js input/*.sql
|
||
|
||
说明:
|
||
- 如果不指定输出文件,将自动在output目录生成 *_dm.sql 文件
|
||
- 支持通配符批量处理多个文件
|
||
- 会自动生成转换日志文件 *_conversion.log.json
|
||
`);
|
||
process.exit(0);
|
||
}
|
||
|
||
// 确保input和output目录存在
|
||
ensureDir('./input');
|
||
ensureDir('./output');
|
||
|
||
const inputFile = args[0];
|
||
|
||
// 检查文件是否存在
|
||
if (!fs.existsSync(inputFile)) {
|
||
console.error(`错误: 文件不存在: ${inputFile}`);
|
||
process.exit(1);
|
||
}
|
||
|
||
// 读取输入文件
|
||
console.log(`\n读取文件: ${inputFile}`);
|
||
const sqlContent = fs.readFileSync(inputFile, 'utf8');
|
||
|
||
// 转换
|
||
const converter = new PG2DMConverter();
|
||
const convertedSql = converter.convert(sqlContent, inputFile);
|
||
|
||
// 确定输出文件路径
|
||
const outputFile = args[1] || path.join(
|
||
'./output',
|
||
path.basename(inputFile, '.sql') + '_dm.sql'
|
||
);
|
||
|
||
// 写入输出文件
|
||
ensureDir(path.dirname(outputFile));
|
||
fs.writeFileSync(outputFile, convertedSql, 'utf8');
|
||
console.log(`\n✓ 转换完成,输出文件: ${outputFile}`);
|
||
|
||
// 生成日志
|
||
if (config.output.generateLog) {
|
||
converter.generateLogFile(outputFile);
|
||
}
|
||
|
||
// 显示警告
|
||
if (converter.warnings.length > 0) {
|
||
console.log('\n⚠ 警告信息:');
|
||
converter.warnings.forEach((warn, i) => {
|
||
console.log(` ${i + 1}. ${warn}`);
|
||
});
|
||
}
|
||
|
||
console.log('\n转换统计:');
|
||
console.log(` - 数据类型转换: ${converter.stats.dataTypes}`);
|
||
console.log(` - 序列转IDENTITY: ${converter.stats.sequences}`);
|
||
console.log(` - COLLATE移除: ${converter.stats.collates}`);
|
||
console.log(` - 索引简化: ${converter.stats.indexes}`);
|
||
console.log(` - COALESCE索引处理: ${converter.stats.coalesceIndexes}`);
|
||
}
|
||
|
||
// 运行主函数
|
||
if (require.main === module) {
|
||
main();
|
||
}
|
||
|
||
module.exports = PG2DMConverter;
|